Tuesday, July 15, 2014

PS2 Modbo 4.0 Installation and Translucent Case Mod

I know its been awhile since my last post but I've been busy completing my and preparing for graduate school. However in my usual weekend activity of perusing retro game stores I came upon a deal that I couldn't say no to. I managed to find a slimline model 79001 ps2 in the as is/broken pile at a retro game store for the paltry sum of $8. This is where piles of seemingly broken game consoles and accesories go when they are deemed unfixeable. But so far everything I have found and bought from this section has been repairable.

So I got home and plugged everything in and hit power expecting nothing but I was wrong. The ps2 was fully functional with some caveats. The disc spindle sometimes doesn't grab the disc correctly and the multi video out jack sometimes needs a wiggle to get rid of interference. I will address both problems in the future. I gave her a good clean since she was full of dog hair and a dead fly. I joked to a friend that I literally debugged a game console.

Attaining a second slim ps2 (my first was a silver model 90000) has prompted me to dig out a modbo 4.0 modchip I purchased around two years ago for $4 off dealextreme but didn't have the courage to install on my only system. But now I have a cheap practice system so I had little to lose. First I downloaded installation diagrams for my model with the help of google images.

I only needed to solder 21 pins. The four in the box labeled F were by far the most difficult since the pitch of the pins was so tight. But I took my time and surprisingly everything worked first go which is rare for me.

I used 30 awg wire wrap wire from radioshack and tried to be neat with laying it out. For the power wires I used thicker stranded wire. I used scotch tape to secure the trickier wires double sided foam tape for the modchip pcb. Even with my temperature controlled iron with a fine tip some of the joints proved difficult but patience prevailed in the end.

And here it is booting some backups I made. Before I had to use swap magic discs to boot my copies but now they play like my pressed originals. It works with both ps1 and ps2 games plus I can boot ulaunchelf from a memory card. And now before anyone starts arguing about the legality issues I create my backups from the original discs that I purchased and only use them so I can leave my originals safe at home when I go off to college. I would cry if anything happened to my original discs. Finally I've ordered a translucent grey replacement case for the system and will post pictures and a video when I have gotten and installed it.

Monday, August 26, 2013

End of Summer Break Massive Update

So it's that time of year again where I have to put most of my projects on hold until I come back home for a break. It's a bittersweet time but I wanted to give a quick update on my current projects that I've made headway on but unfortunately will not get to complete for awhile. I can't be bothered to do individual posts because I'm busy packing but here is everything I have been working on this summer in a huge picture and video filled montage.

First up is my portable SNES project (it will end up barely being larger than a game cart). This starts with a short story so here it is. I found a "broken" retro duo at a used game store for $4 so I couldn't say no (I even made a short video on it up on my youtube account - sjm4306). I took it home and immediately tested it to find that the SNES side was still fully operational but the NES side was kaput. Ok this worked for me because I ordered a free sample of a small enclosure from OKW awhile ago that is almost the exact size of a SNES cart so I've been wanting to make a tiny portable SNES. So I set out to trim the retro duo SNES board to fit in said enclosure. Here are some progress videos.

Progress Video #1
Progress Video #2
 Progress Video #3
Progress Video #4

And that is where I left off. I need to find a cheap 3.5" composite lcd off of ebay which will work. The majority that I bought in the past seem to have rolling video issues with the video output of clone systems. So I will try and see if I can find one that works while I am at college. I plan on finishing this guy up over winter break after I come home.

And now for something a little different. The second project I've been working on is a 3V DC to 200V AC inverter so I can drive an electroluminescent (EL) panel to backlight an old gameboy pocket I have laying around.

Did I ever mention I love clear or translucent electronic devices ... anyway back to the update. I carefully removed only the back reflective layer on the lcd so I could backlight it. For the electronics I used a pic16f886 (I will end up porting the code to a smaller pic later after I get everything working) to drive an inductor based inverter. This generates around 200V DC which I then chop up to simulate AC with another output from my mcu. I will make a simple schematic and place it below when I get the time but for now here are some pics of it driving various EL panels I pulled from old electronics.

For fun I wired a voltage doubler to boost the output to 400V AC. It all works off of a 3.7V lithium ion battery and only draws about 25mA.
And that is where I left off. I still need to move on past the prototyping stage. I'll finish it later.

Next up I finally got major work done on my desktop speakers and class D amplifier. I pulled the speakers from a system someone threw out and the wood came from an old speaker cabinet with a dead subwoofer. I cut everything with a hacksaw and finished it with sanding blocks and my dremel.
I can be very methodical and organized when I try. Warning crap loads of pictures below.

And here is the TI TPA3122D2 stereo 10W class D amplifier to drive the show. I did a short test video.

I bought some sealant and spray paint for the enclosures which I still need to finish. I just need to mount the amp (I'm tempted to go with a digital volume and control system with a rotary knob and lcd screen) and then I will be done this entire project.

Finally my last project was to build a clock. But it won't be just any clock. I bought a bag of 200 water clear blue leds off ebay that I've been itching to use. 
So why not make a huge led matrix and make a clock that can also scroll text from a computer. The only problem is how to diffuse 200 leds by sanding each and every one.
My solution:
1000 grit sandpaper and an electric drill.

Unfortunately I only got around to sanding half of the leds before I got sick of it so this project is on hold. I even got as far as trying out wood for the front panel.
But I opted for just mounting the leds on perfboard for ease of assembly.

I still have to finish sanding the rest and solder (oh what fun) all the leads to the board. Oh well I'll leave all that till I have enough motivation to finish this.

Finally (the truth this time) I would like to end off with a perler bead creation I made. I found some old beads my sister and I played with when we were kids so I found it fitting to make some video game sprite art to hang on my wall. Say hello to Samus from the original Metroid.

But it all ended quickly as I only had enough for one sprite. Oh well, maybe I'll pick up some more beads later so I can make an entire montage to tape to my wall.

And that is about everything I have done this summer (aside from work and taking graduate record exams). Phew that was exhausting. Before I finish I also want to let you guys know that I wont be making posts for TeardownTube episodes on my blog so if you want to see new episodes then subscribe to my Youtube channl sjm4306. With that out of the way I hope you enjoyed my adventures. Although summer is drawing to a close I have much planned for both my blog and Youtube so stay connected.

Thursday, July 11, 2013

Super Joy 3 NES on a Chip Modifications

As a preface to the ongoing project below, as usual I was wandering Ebay and I happened upon a used Super Joy 3 for $8 so I couldn't say no. It is a "Famiclone" or also known as a NOAC (Nintendo on a Chip) meaning it is a cheap Chinese reverse engineered custom ASIC of the original NES. The beautiful thing is that is has a onboard Famicom 60 pin slot to accept original games. This can be rewired to accept US NTSC 72 pin NES games. So I set about making these modifications in order to build my own tiny portable NES. The only thing that stands between me and my dream is that I lack a 72 pin NES cartridge connector and I dont want to buy one if I can help it. So how did I work around this problem? Ingenuity!

I simply took an old ATA PC motherboard and desoldered the PCI connector slots from it with the help of my handy heat gun (warning it may look like a hair dryer but it gets MUCH hotter!) as I noticed it was about the right fit for the NES cart edge connector.

One problem is that the 72 pin card is much too wide so I needed to cut and splice two sockets together. Here I marked off where to cut by opening up a NES cart for reference and used a small hacksaw.

Looked like a good fit. But the PCI slot has many more pins than necessary and the alignment was a little off so some had to be removed with pliers to insure there were no shorts.
Both sides were now finished so I set about finding the right fit and tediously testing each pin with my multimeter. Overall everything fits like a glove.

Now I needed to add some plastic spacers to connect both sides and give some mechanical rigidity
 so I added some scrap black ABS plastic cut to size with my Dremel and glued with some super glue.
Finally I soldered the 60 some pins with IDE ribbon cable and rechecked the connections with my multimeter. Notice how the center five pins which would be located at the black plastic are not connected on either side. This is because these were brought out to the bottom expansion port of the NES which was never used to I left these pins out.
This is where I left off for now. I still need to remove the Famicom cart slot from the Super Joy 3's PCB and solder in my FrankenCart Slot. I'm keeping my fingers crossed that everything works. If not then this was still a good exercise in modifications. I'll update this page when I make more progress.